0x36302418126y36302418126
Grid:
Tics Lines:
Width px
Hash Lines:
Width px
Labels:
Font px
Trace Lines:
Robot 1:
Width px
Robot 2:
Width px
Robot 3:
Width px
Robot 4:
Width px
Axes: x-axis y-axis Show Grid
Grid: 24x24 inches 36x36 inches 72x72 inches
96x96 inches 192x192 inches
Quad: 4 quadrants 1 quadrant
Units: US Customary Metric
Background:

Robot 1

Initial Position:
( in, in)
Initial Angle:
deg
Current Position: (0 in, 0 in)
Current Angle: 90 deg
Wheel Radius:
Track Width:
in

Robot 2

Initial Position:
( in, in)
Initial Angle:
deg
Current Position: (6 in, 0 in)
Current Angle: 90 deg
Wheel Radius:
Track Width:
in

Robot 3

Initial Position:
( in, in)
Initial Angle:
deg
Current Position: (12 in, 0 in)
Current Angle: 90 deg
Wheel Radius:
Track Width:
in

Robot 4

Initial Position:
( in, in)
Initial Angle:
deg
Current Position: (18 in, 0 in)
Current Angle: 90 deg
Wheel Radius:
Track Width:
in

Draw a Nose with a Bezier Curve
Problem Statement:

The pre-placed blocks draw the face. Add a Bezier curve block from the drawing blocks to create the nose. The first and last x and y coordinates determine the starting and end points of the curve. The middle coordinates guide the shape of the curve. Experiment with different coordinates to see how it works!
/* Code generated by RoboBlockly v2.0 */
#include <chplot.h>
CPlot plot;

plot.backgroundColor("#66cccc");
plot.fillColor("white");
plot.fillOpacity(0.7);
plot.noStrokeColor();
plot.ellipse(18, 18, 16, 18, 0);
plot.strokeColor("black");
plot.bezier(18, 18, 18, 17, 21, 14, 18, 14);
plot.grid(PLOT_OFF);

plot.label(PLOT_AXIS_XY, "");
plot.grid(PLOT_OFF);
plot.tics(PLOT_AXIS_XY, PLOT_OFF);
plot.axis(PLOT_AXIS_XY, PLOT_OFF);
plot.axisRange(PLOT_AXIS_XY, 0, 36);
plot.ticsRange(PLOT_AXIS_XY, 6);
plot.sizeRatio(1);
plot.plotting();
Blocks Save Blocks Load Blocks Show Ch Save Ch Workspace
Problem Statement:

The pre-placed blocks draw the face. Add a Bezier curve block from the drawing blocks to create the nose. The first and last x and y coordinates determine the starting and end points of the curve. The middle coordinates guide the shape of the curve. Experiment with different coordinates to see how it works!

		
Time