### Learning Math and Coding with Robots

 Grid: Tics Lines: Width px Hash Lines: Width px Labels: Font px Trace Lines: Robot 1: Width px Robot 2: Width px Robot 3: Width px Robot 4: Width px
 Axes: x-axis y-axis Show Grid Grid: 24x24 inches 36x36 inches 72x72 inches 96x96 inches 192x192 inches Quad: 4 quadrants 1 quadrant Hardware Units: US Customary Metric
 Background:

#### Robot 1

 Initial Position: ( in, in) Initial Angle: deg Current Position: (0 in, 0 in) Current Angle: 90 deg Wheel Radius: 1.75 in1.625 in2.0 in Track Width: in

#### Robot 2

 Initial Position: ( in, in) Initial Angle: deg Current Position: (6 in, 0 in) Current Angle: 90 deg Wheel Radius: 1.75 in1.625 in2.0 in Track Width: in

#### Robot 3

 Initial Position: ( in, in) Initial Angle: deg Current Position: (12 in, 0 in) Current Angle: 90 deg Wheel Radius: 1.75 in1.625 in2.0 in Track Width: in

#### Robot 4

 Initial Position: ( in, in) Initial Angle: deg Current Position: (18 in, 0 in) Current Angle: 90 deg Wheel Radius: 1.75 in1.625 in2.0 in Track Width: in

Design a Cylinder
Problem Statement:
Your chocolate ice-cream cone is melting, and you need to design a cylindrical cup big enough to contain the exact amount of melted ice-cream. Answer the prompt to input the height and radius dimension of your cup (round to at least 2 decimal places). Assume the ice-cream takes up the entire cone + the hemisphere scoop on top.
```/* Code generated by RoboBlockly v2.0 */
#include <chplot.h>
double height;
CPlot plot;

// This an example of 1 possible design
height = 2.625;
plot.strokeColor("#3333ff");
plot.ellipse(12, 12, 8, 2, 0);
plot.line(8, 12, 8, 12 - height);
plot.line(16, 12, 16, 12 - height);
plot.ellipseArc(12, 12 - height, 8, 2, 0, 180, 360);

plot.axisRange(PLOT_AXIS_XY, -12, 24);
plot.ticsRange(PLOT_AXIS_XY, 6);
plot.sizeRatio(1);
plot.plotting();```
 Blocks Save Blocks Load Blocks Show Ch Save Ch Workspace
Problem Statement:
Your chocolate ice-cream cone is melting, and you need to design a cylindrical cup big enough to contain the exact amount of melted ice-cream. Answer the prompt to input the height and radius dimension of your cup (round to at least 2 decimal places). Assume the ice-cream takes up the entire cone + the hemisphere scoop on top.

Time