Learning Math and Coding with Robots

Linkbot Image Mindstorm Image Cursor Image
0x2418126-6-12y2418126-6-12
Grid:
Tics Lines:
Width px
Hash Lines:
Width px
Labels:
Font px
Trace Lines:
Robot 1:
Width px
Robot 2:
Width px
Robot 3:
Width px
Robot 4:
Width px
Axes: x-axis y-axis Show Grid
Grid: 24x24 inches 36x36 inches 72x72 inches
96x96 inches 192x192 inches
Quad: 4 quadrants 1 quadrant Hardware
Units: US Customary Metric
Background: Background Image

Robot 1

Linkbot
Mindstorm
Initial Position:
( in, in)
Initial Angle:
deg
Current Position: (0 in, 0 in)
Current Angle: 90 deg
Wheel Radius:
Track Width:
in

Robot 2

Linkbot
Mindstorm
Initial Position:
( in, in)
Initial Angle:
deg
Current Position: (6 in, 0 in)
Current Angle: 90 deg
Wheel Radius:
Track Width:
in

Robot 3

Linkbot
Mindstorm
Initial Position:
( in, in)
Initial Angle:
deg
Current Position: (12 in, 0 in)
Current Angle: 90 deg
Wheel Radius:
Track Width:
in

Robot 4

Linkbot
Mindstorm
Initial Position:
( in, in)
Initial Angle:
deg
Current Position: (18 in, 0 in)
Current Angle: 90 deg
Wheel Radius:
Track Width:
in

Design a Cylinder
Problem Statement:
Your chocolate ice-cream cone is melting, and you need to design a cylindrical cup big enough to contain the exact amount of melted ice-cream. Answer the prompt to input the height and radius dimension of your cup (round to at least 2 decimal places). Assume the ice-cream takes up the entire cone + the hemisphere scoop on top.
/* Code generated by RoboBlockly v2.0 */
#include <chplot.h>
double height;
CPlot plot;

// This an example of 1 possible design
height = 2.625;
plot.strokeColor("#3333ff");
plot.ellipse(12, 12, 8, 2, 0);
plot.line(8, 12, 8, 12 - height);
plot.line(16, 12, 16, 12 - height);
plot.ellipseArc(12, 12 - height, 8, 2, 0, 180, 360);

plot.axisRange(PLOT_AXIS_XY, -12, 24);
plot.ticsRange(PLOT_AXIS_XY, 6);
plot.sizeRatio(1);
plot.plotting();
Blocks Save Blocks Load Blocks Show Ch Save Ch Workspace
Problem Statement:
Your chocolate ice-cream cone is melting, and you need to design a cylindrical cup big enough to contain the exact amount of melted ice-cream. Answer the prompt to input the height and radius dimension of your cup (round to at least 2 decimal places). Assume the ice-cream takes up the entire cone + the hemisphere scoop on top.

		
Rubbish bin
Time