### Learning Math and Coding with Robots

 Grid: Tics Lines: Width px Hash Lines: Width px Labels: Font px Trace Lines: Robot 1: Width px Robot 2: Width px Robot 3: Width px Robot 4: Width px
 Axes: x-axis y-axis Show Grid Grid: 24x24 inches 36x36 inches 72x72 inches 96x96 inches 192x192 inches Quad: 4 quadrants 1 quadrant Hardware Units: US Customary Metric
 Background:

#### Robot 1

 Initial Position: ( in, in) Initial Angle: deg Current Position: (0 in, 0 in) Current Angle: 90 deg Wheel Radius: 1.75 in1.625 in2.0 in Track Width: in

#### Robot 2

 Initial Position: ( in, in) Initial Angle: deg Current Position: (6 in, 0 in) Current Angle: 90 deg Wheel Radius: 1.75 in1.625 in2.0 in Track Width: in

#### Robot 3

 Initial Position: ( in, in) Initial Angle: deg Current Position: (12 in, 0 in) Current Angle: 90 deg Wheel Radius: 1.75 in1.625 in2.0 in Track Width: in

#### Robot 4

 Initial Position: ( in, in) Initial Angle: deg Current Position: (18 in, 0 in) Current Angle: 90 deg Wheel Radius: 1.75 in1.625 in2.0 in Track Width: in

Graphing Systems of Linear Equations with Robots
Problem Statement:
Solve 5x â€“ 25 = 10 and 90 â€“ 3y = 45. First, drive the robot to trace the linear equation 5x-25 = 10 using drivexyTo function (Be sure to extend the line to the entire grid). Then trace the equation 90 - 3y = 45, ending at the point where the two linear lines intersect.
```/* Code generated by RoboBlockly v2.0 */
double radius = 1.75;
double trackwidth = 3.69;

robot.traceColor("red", 4);
robot.traceOff();
robot.drivexyTo(7, -12, radius, trackwidth);
robot.traceOn();
robot.drivexyTo(7, 24, radius, trackwidth);
robot.traceOff();
robot.drivexyTo(0, 15, radius, trackwidth);
robot.traceOn();
robot.drivexyTo(7, 15, radius, trackwidth);
```
 Blocks Save Blocks Load Blocks Show Ch Save Ch Workspace
Problem Statement:
Solve 5x â€“ 25 = 10 and 90 â€“ 3y = 45. First, drive the robot to trace the linear equation 5x-25 = 10 using drivexyTo function (Be sure to extend the line to the entire grid). Then trace the equation 90 - 3y = 45, ending at the point where the two linear lines intersect.

Time